53 research outputs found

    LSQ13ddu: a rapidly evolving stripped-envelope supernova with early circumstellar interaction signatures

    Get PDF
    This paper describes the rapidly evolving and unusual supernova LSQ13ddu, discovered by the La Silla-QUEST survey. LSQ13ddu displayed a rapid rise of just 4.8 ± 0.9 d to reach a peak brightness of −19.70 ± 0.02 mag in the LSQgr band. Early spectra of LSQ13ddu showed the presence of weak and narrow HeI features arising from interaction with circumstellar material (CSM). These interaction signatures weakened quickly, with broad features consistent with those seen in stripped-envelope SNe becoming dominant around two weeks after maximum. The narrow HeI velocities are consistent with the wind velocities of luminous blue variables but its spectra lack the typically seen hydrogen features. The fast and bright early light curve is inconsistent with radioactive ⁵⁶Ni powering but can be explained through a combination of CSM interaction and an underlying ⁵⁶Ni decay component that dominates the later time behaviour of LSQ13ddu. Based on the strength of the underlying broad features, LSQ13ddu appears deficient in He compared to standard SNe Ib

    Chandra, HST/STIS, NICER, Swift, and TESS Detail the Flare Evolution of the Repeating Nuclear Transient ASASSN-14ko

    Full text link
    ASASSN-14ko is a nuclear transient at the center of the AGN ESO 253-G003 that undergoes periodic flares. Optical flares were first observed in 2014 by the All-Sky Automated Survey for Supernovae (ASAS-SN) and their peak times are well-modeled with a period of 115.21.2+1.3115.2^{+1.3}_{-1.2} days and period derivative of 0.0026±0.0006-0.0026 \pm 0.0006. Here we present ASAS-SN, Chandra, HST/STIS, NICER, Swift, and TESS data for the flares that occurred in December 2020, April 2021, July 2021, and November 2021. The HST/STIS UV spectra evolve from blue shifted broad absorption features to red shifted broad emission features over \sim10 days. The Swift UV/optical light curves peaked as predicted by the timing model, but the peak UV luminosities varied between flares and the UV flux in July 2021 was roughly half the brightness of all other peaks. The X-ray luminosities consistently decreased and the spectra became harder during the UV/optical rise but apparently without changes in absorption. Finally, two high-cadence TESS light curves from December 2020 and November 2018 showed that the slopes during the rising and declining phases changed over time, which indicates some stochasticity in the flare's driving mechanism. ASASSN-14ko remains observationally consistent with a repeating partial tidal disruption event, but, these rich multi-wavelength data are in need of a detailed theoretical model.Comment: 25 pages, 14 figures, 4 tables; Submitted to ApJ, comments welcom

    The carbon-rich type Ic supernova 2016adj in the iconic dust lane of Centaurus A: signatures of interaction with circumstellar hydrogen?

    Full text link
    We present a comprehensive data set of supernova (SN) 2016adj located within the central dust lane of Centaurus A. SN 2016adj is significantly reddened and after correcting the peak apparent BB-band magnitude (mB=17.48±0.05m_B = 17.48\pm0.05) for Milky Way reddening and our inferred host-galaxy reddening parameters (i.e., RVhost=5.7±0.7R_{V}^{host} = 5.7\pm0.7 and AVhost=6.3±0.2A_{V}^{host} = 6.3\pm0.2), we estimate it reached a peak absolute magnitude of MB18M_B \sim -18. Detailed inspection of the optical/NIR spectroscopic time-series reveals a carbon-rich SN Ic and not a SN Ib/IIb as previously suggested in the literature. The NIR spectra shows prevalent carbon-monoxide formation occurring already by +41 days past BB-band maximum, which is 11\approx 11 days earlier than previously reported in the literature for this object. Interestingly around two months past maximum, the NIR spectrum of SN~2016adj begins to exhibit H features, with a +97~d medium resolution spectrum revealing both Paschen and Bracket lines with absorption minima of 2000\sim 2000 km/s, full-width-half-maximum emission velocities of 1000\sim 1000 km/s, and emission line ratios consistent with a dense emission region. We speculate these attributes are due to circumstellar interaction (CSI) between the rapidly expanding SN ejecta and a H-rich shell of material formed during the pre-SN phase. A bolometric light curve is constructed and a semi-analytical model fit suggests the supernova synthesized 0.5 solar masses of 56^{56}Ni and ejected 4.2 solar masses of material, though these values should be approached with caution given the large uncertainties associated with the adopted reddening parameters, possible CSI contamination, and known light echo emission. Finally, inspection of Hubble Space Telescope archival data yielded no progenitor detection.Comment: Submitted to A&A, comments are welcom

    Serendipitous Nebular-phase JWST Imaging of SN Ia 2021aefx: Testing the Confinement of 56-Co Decay Energy

    Full text link
    We present new 0.3-21 micron photometry of SN 2021aefx in the spiral galaxy NGC 1566 at +357 days after B-band maximum, including the first detection of any SN Ia at >15 micron. These observations follow earlier JWST observations of SN 2021aefx at +255 days after the time of maximum brightness, allowing us to probe the temporal evolution of the emission properties. We measure the fraction of flux emerging at different wavelengths and its temporal evolution. Additionally, the integrated 0.3-14 micron decay rate of Δm0.314=1.35±0.05\Delta m_{0.3-14} = 1.35 \pm 0.05 mag/100 days is higher than the decline rate from the radioactive decay of 56^{56}Co of 1.2\sim 1.2mag/100 days. The most plausible explanation for this discrepancy is that flux is shifting to >14 micron, and future JWST observations of SNe Ia will be able to directly test this hypothesis. However, models predicting non-radiative energy loss cannot be excluded with the present data.Comment: Accepted for publication in ApJL; 11 pages, 4 figures, 2 tables in two-column AASTEX63 forma

    Revealing the progenitor of SN 2021zby through analysis of the TESSTESS shock-cooling light curve

    Full text link
    We present early observations and analysis of the double-peaked Type IIb supernova (SN IIb) 2021zby. TESSTESS captured the prominent early shock cooling peak of SN 2021zby within the first \sim10 days after explosion with a 30-minute cadence. We present optical and near-infrared spectral series of SN 2021zby, including three spectra during the shock cooling phase. Using a multi-band model fit, we find that the inferred properties of its progenitor are consistent with a red supergiant or yellow supergiant, with an envelope mass of \sim0.3-3.0 M_\odot and an envelope radius of \sim50-350R R_\odot. These inferred progenitor properties are similar to those of other SNe IIb with double-peak feature, such as SNe 1993J, 2011dh, 2016gkg and 2017jgh. This study further validates the importance of the high cadence and early coverage in resolving the shape of the shock cooling light curve, while the multi-band observations, especially UV, is also necessary to fully constrain the progenitor properties.Comment: 12 pages, 5 figures, 2 tables, submitted to ApJ

    ASASSN-18am/SN 2018gk : An overluminous Type IIb supernova from a massive progenitor

    Full text link
    ASASSN-18am/SN 2018gk is a newly discovered member of the rare group of luminous, hydrogen-rich supernovae (SNe) with a peak absolute magnitude of MV20M_V \approx -20 mag that is in between normal core-collapse SNe and superluminous SNe. These SNe show no prominent spectroscopic signatures of ejecta interacting with circumstellar material (CSM), and their powering mechanism is debated. ASASSN-18am declines extremely rapidly for a Type II SN, with a photospheric-phase decline rate of 6.0 mag (100d)1\sim6.0~\rm mag~(100 d)^{-1}. Owing to the weakening of HI and the appearance of HeI in its later phases, ASASSN-18am is spectroscopically a Type IIb SN with a partially stripped envelope. However, its photometric and spectroscopic evolution show significant differences from typical SNe IIb. Using a radiative diffusion model, we find that the light curve requires a high synthesised 56Ni\rm ^{56}Ni mass MNi0.4 MM_{\rm Ni} \sim0.4~M_\odot and ejecta with high kinetic energy Ekin=(710)×1051E_{\rm kin} = (7-10) \times10^{51} erg. Introducing a magnetar central engine still requires MNi0.3 MM_{\rm Ni} \sim0.3~M_\odot and Ekin=3×1051E_{\rm kin}= 3\times10^{51} erg. The high 56Ni\rm ^{56}Ni mass is consistent with strong iron-group nebular lines in its spectra, which are also similar to several SNe Ic-BL with high 56Ni\rm ^{56}Ni yields. The earliest spectrum shows "flash ionisation" features, from which we estimate a mass-loss rate of M˙2×104 M yr1 \dot{M}\approx 2\times10^{-4}~\rm M_\odot~yr^{-1} . This wind density is too low to power the luminous light curve by ejecta-CSM interaction. We measure expansion velocities as high as 17,000 17,000 km/s for HαH_\alpha, which is remarkably high compared to other SNe II. We estimate an oxygen core mass of 1.83.41.8-3.4 MM_\odot using the [OI] luminosity measured from a nebular-phase spectrum, implying a progenitor with a zero-age main sequence mass of 192619-26 MM_\odot
    corecore